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A B S T R A C T

Plant-based beverages have emerged as substitutes for cow’s milk, and their consumption has been steadily 
increasing in recent years, largely due to health-related reasons, such as milk protein allergies or lactose intol-
erance. This raises the need for development of analytical approaches for these products that can capable of 
accurately identifying and classifying these products. This study focused on almond, rice, oat, and soy plant- 
based milk substitute drinks, which are the most popular among this type of beverages. Infrared spectroscopy 
data have been used to develop a fast, cost-effective and easy to implement in different settings chemometrics 
model for these beverages, which allows their classification according to their nature and compositional vari-
ability. It was found that the use of the spectral region of the characteristic Amide I and II bands of the proteins 
led to an optimal description of the data by the first two principal components in the developed Principal 
Component Analysis (PCA) model. For oat, rice, and soy beverages, distinct characteristic spectroscopic features 
allowed their successful clustering using the chemometric approach, while the results obtained for the studied 
almond beverages evidenced their significant compositional variability, resulting in a less defined clustering. 
These results are consistent with the known nutritional information for the different types of beverages.

1. Introduction

This study focused on plant-based beverages commonly used as milk 
substitutes (specifically, almond, rice, oat, and soy drinks), utilizing 
attenuated total reflectance Fourier transform infrared spectroscopy 
(ATR-FTIR) together with principal component analysis (PCA) and hi-
erarchical cluster analysis (HCA) to develop classification models for 
these beverages.

Cow’s milk is one of the most widely consumed foods globally, across 
all age groups, and plays a crucial role in a balanced diet, serving as a 
significant source of energy. According to the Portuguese Institute of 
Statistics (Instituto Nacional de Estatítica, INE; Statistics Portugal), the 
annual average milk consumption per person in Portugal in the period 
2020–2023 stayed in the 62–72 kg range (Instituto Nacional de Esta-
tística (Statistics Portugal), 2024).

Nutritionally, milk is rich in proteins (around 3 % by weight), car-
bohydrates (4–5 %), lipids (3–4 %), vitamins (0.1 %), and minerals 
(0.8 %), with water making up approximately 87 % of its composition 
(Vašková et al., 2016). Among these, lipids are particularly important as 
they are the primary source of energy in milk and contribute to the 

desirable properties of dairy products.
Currently, a variety of milks with specific nutritional properties, such 

as low-fat, lactose-free, flavored, or vitamin D-fortified options, are 
available on the market to meet consumer demands (Vašková et al., 
2016). Additionally, there is a growing trend toward the consumption of 
plant-based beverages, which are now widely marketed and have 
become an important part of many people’s diets. The growing demand 
for alternative milk beverages is largely driven by health concerns, such 
as allergies to cow’s milk proteins and lactose intolerance, or simply by 
nutritional options (e.g., vegan) (Berardy et al., 2022; Taeger and Thiele, 
2024; Álvarez‑Álvarez et al., 2024; Walther et al., 2022; Burciu Tuhut, 
2023). Although there is a large variation in the protein values of drinks 
due to the different types available, they can match the protein values of 
cow’s milk with soy drinks, approximately 3.4 g in a 100 mL serving 
(Berardy et al., 2022; Burciu Tuhut, 2023). Plant-based beverages are 
made from cereals like oats and rice, legumes like soy, or nuts like al-
monds and coconuts, with almond, soy, rice, and oat beverages being the 
most favored choices (Berardy et al., 2022; Taeger and Thiele, 2024; 
Álvarez‑Álvarez et al., 2024; Walther et al., 2022; Burciu Tuhut, 2023).

Efficient regulation of plant-based beverages on the market is 
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essential to meet consumer needs. Such regulation depends on thorough 
studies of the products’ composition and stability. Additionally, it is 
essential to conduct detailed analyses of milk composition also to detect 
adulteration processes and ensure the quality and authenticity of the 
products being sold (Mendes et al., 2016).

Nowadays, the analysis of milk can be undertaken using a plethora of 
techniques, which includes chromatographic [e.g., high-performance 
liquid chromatography (HPLC), gas chromatography (GC)], spectro-
scopic/spectrometric [infrared (IR), Raman and nuclear magnetic 
resonance (NMR) spectroscopies, mass spectrometry (MS)], refracto-
metric, electrophoretic, cryoscopic, chemical (e.g., Kjedahl method for 
determination of the total protein contents), and enzymatic (enzyme- 
linked immunosorbent assay (ELISA)) methods. These methods are often 
used in combination to provide a comprehensive analysis of milk, 
ensuring its quality, safety, and authenticity in the marketplace. Among 
those techniques, infrared spectroscopy has the advantage of being 
inexpensive, easy to implement in different settings, cost-effective, fast, 
and essentially non-destructive, being a suitable technique to quantify 
major components of beverages, like fat, protein, and total solids. It has 
been used as an effective way to conduct exploratory compositional 
analysis, as well as a classification method for different types of milk 
(Mendes et al., 2016; Mazurek et al., 2015; El-Abassy et al., 2011; Balan 
et al., 2020a, 2020b; Mendes et al., 2020; Cuong et al., 2021; Reiner 
et al., 2020; Júnior et al., 2016; Silva et al., 2021; Thomas, 2008; Sol-
ís-Oba et al., 2011; Etzion et al., 2004; Li et al., 2015; Nieuwoudt et al., 
2016; Gómez-Mascaraque et al., 2020; Xiao et al., 2022; Brandão et al., 
2010).

Infrared spectroscopy is an extensively used method in many areas 
that is particularly powerful in providing detailed information on the 
constituents of a given sample, through analysis of their vibrational 
signatures. Because of its easy sampling, attenuated total reflectance 
Fourier transform infrared spectroscopy (ATR-FTIR) has gained popu-
larity among the existing variants of IR spectroscopy for application in 
quantitative and qualitative analyses, including those of milk, in 
particular due to its simplicity to apply (sample preparation is minimal), 
high reproducibility, and portability (Balan et al., 2020a; Thomas, 2008; 
Solís-Oba et al., 2011; Etzion et al., 2004).

ATR-FTIR spectroscopy has its analytical power amplified when used 
together with chemometric methods, because the information contained 
in vibrational spectra is generally extensive. Chemometrics allows for 
the efficient organization, classification, and quantification of the 
spectroscopic results. Among these methods, principal component 
analysis (PCA) appears as a simple, yet highly useful statistical method 
for analyzing large quantities of data, like these contained in vibrational 
spectra, and identifying patterns, recognizing differences, and extracting 
relevant information that may not be perceptible otherwise (Vašková 
et al., 2016). PCA is a widely used unsupervised linear projection 
method in exploratory data analysis. It allows for reduction of the 
dimensionality of the data, by creating new uncorrelated variables – the 
principal components – using the variance information defined in terms 
of the original set of variables (the frequencies, in the case of spectro-
scopic information) (Balan et al., 2020a; Ildiz et al., 2021; Brito et al., 
2025). The method can also be used for classification, when coupled 
with an a posteriori criterion for sample grouping (Ildiz et al., 2021). 
Another popular chemometric method commonly used together with 
spectroscopic data is the hierarchical cluster analysis (HCA), which is 
applied to group the samples by their similarity using a specific metrics, 
usually the Euclidean distance between the points that define the sam-
ples in a specific vector space related to the variables, and a clustering 
criterion (Biancolillo and Marini, 2018; Shenbagalakshmi et al., 2023). 
Both PCA and HCA are unsupervised methods, so that no previous in-
formation is required for classification.

As mentioned before, this study focused on plant-based beverages 
commonly used as milk substitutes (specifically, almond, rice, oat, and 
soy drinks), utilizing ATR-FTIR spectroscopy together with PCA and 
HCA to develop classification models for these beverages.

2. Experimental methods

2.1. Samples

Forty samples of four different types of commercial brands of plant- 
based milk substituting beverages [almond (A), rice (R), oat (O), and soy 
(S); 10 samples of each)] were considered for analysis in this investi-
gation (see Supplementary Material Table S1 for details). All samples 
were acquired from shops in Coimbra, Portugal. Before acquisition of 
the infrared spectra, the samples were subjected to lyophilization, which 
was carried out in a FreeZone 4.5 freeze dryer (Labconco, USA), at a 
pressure of 0.060 Torr and using a condenser temperature of –52 ◦C 
(Santos et al., 2018).

2.2. Infrared spectroscopy

Infrared spectra were obtained in the ATR-FTIR mode in a Nicolet iS5 
FT-IR spectrometer (Thermo Fisher Scientific), using an iD7 ATR 
Accessory (Thermo Fisher Scientific) with a diamond crystal as the main 
component, and a deuterated triglycine sulfate detector (DTGS). Each 
spectrum was acquired in the range of 4000–400 cm⁻1, with a resolution 
of 1 cm⁻1, averaging 32 scans, and with data spacing of 0.120, resulting 
in a matrix of 29,869 variables. For each sample, measurements were 
taken in triplicate and averaged, and the order of the experiments was 
randomized.

2.3. Data analysis

The data pre-processing was conducted using Unscrambler® 
X.10.5.1 (Aspen UnscramblerTM, 2018). The spectra were area 
normalization and baseline corrected (liner correction). Scores, re-
siduals and leverage plots were employed in the detection and elimi-
nation of outliers from the dataset. In the PCA analysis, the data were 
mean-centered, and equal weights were assigned to the variables (fre-
quencies). In the HCA analysis, the Method of Hierarchical 
Complete-linkage with Squared Euclidean distance was used.

3. Results and discussion

The ATR-FTIR spectra of the 40 studied samples, in the range of 
4000–400 cm− 1, was acquired, the spectral profile of all samples 
showing many similarities. The spectral range of 1780–680 cm− 1 was 
initially chosen for the study (Fig. 1). After the preliminary data analysis 
for identification of outliers, a sub-range of the initially used spectral 
range was selected (1720.6–1371.1 cm− 1) for the analytical studies, as 
this sub-range shows more significant differences between the spectra. 
This sub-range comprehends essentially bands attributable to the amide 
groups of the proteins present in the various analyzed beverages (Amide 
I and II bands).

In the selected spectral region, the spectra of rice and oat beverage 
samples exhibit rather similar profiles, notably distinct from the spectra 
of soy beverage samples. On the other hand, the spectra of almond 
beverages show significant diversity, with some being more similar to 
those of soy beverages and others to the spectra of rice/oat beverages. In 
the characteristic region of lipids (1780.0–1720.6 cm− 1), all spectra are 
similar, indicating that the lipid content does not differ much in the 
samples, regardless of the type of plant-based beverage. It is important 
to mention that the spectra of different plant-based beverages differ 
significantly also in the 1146.1–880.1 cm− 1 spectral region, which is 
associated with various distinct chemical species. In particular, the rice/ 
oat group exhibits intense bands in this region and soy shows less intense 
bands, while almond displays a spectral variability, paralleling what is 
observed in the amide protein characteristic spectral region discussed 
above.

The composition of plant-based beverages directly impacts their 
FTIR spectra. The presence of emulsifiers and thickeners can modify the 
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spectral region associated with carbohydrates, while the addition of 
vegetable oils influences the bands related to lipids (~1740 cm⁻¹). In 
addition, thermal processing can affect the protein structure of the 
beverages, resulting in subtle changes in the intensity and shift of the 
Amide I and II bands (Khongphakdee et al., 2025). Different enzymatic 
hydrolysis methods used in the production of rice and oat beverages can 
alter the proportion of simple sugars and starches, reflected in the FTIR 

spectrum (Shahbal et al., 2023).
Fig. 2 presents the PCA results, performed using spectral information 

in the 1720.6–1371.1 cm− 1 range, specifically the PC2 vs PC1 scores 
plot. The plot shows the high explicability in PC1, which accounts for 
99 % variance in the data, PC2 accounting for the remaining 1 % 
variance.

In the plot, it can be seen that both the rice (R) and oat (O) samples 

Fig. 1. 1780–680 cm− 1 spectral region of the spectra of the studied lyophilized beverages, after area normalization and baseline correction.

Fig. 2. Scores plot (PC1 vs. PC2) of plant-based beverage samples (amide vibrations region) ( - Rice, - Oat, - Almond, and - Soy).
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are closely clustered, while the soy (S) samples cluster exhibits a 
considerable larger dispersion. The rice and oat clusters stay close to 
each other but separated, being well-separated from the soy cluster. As 
anticipated considering the initial analysis of the spectra of the different 
types of samples, the almond (A) samples appear scattered in the scores 
plot. The explanation for these observations is simple: by looking to the 
compositions specified by the manufacturers in the labels of the different 
products (see Supplementary Material, Table S1) it can be seen that, 
whereas the different samples of each one of the rice, oat and soy bev-
erages have similar compositions, those labeled as “almond beverage” 
have in fact very diverse compositions, in some cases almond contents 
being even smaller than their contents on soy or rice.

In the scores plot it is possible to observe that samples A-10, A-4 and 
A-9 are very close to the rice and oat groups. This can be explained by 
the fact that these samples, in spite of being designated commercially as 
“almond beverages” have high levels of rice in their composition (17 %, 
15.2 % and 10 % respectively). The percentages of almond in these 
samples are in fact smaller than those of rice (1 %, 1.5 %, 2.5 %), and 
they should be labelled as rice beverages instead of almond drinks. In 
turn, sample A-1 is well included in the group of soy drinks due to its 
dominant content of soy in its composition (5.8 %, vs. 2.5 % of almond). 
The information provided in the label of the remaining samples (A-2, A- 
5, A-6, A-7 and A-8) indicates that they actually contained only almond. 
without the addition of other oilseeds. They appear scattered in the 
scores plot and, like for the case of the soy beverages, the scattering 
about the PC1 axis appears to be related with the different content of 
these samples in carbohydrates. For example, A-5 and A-7 have rela-
tively large and similar carbohydrates contents and sit together for 
negative PC1 values (the A-samples having the most negative PC1 scores 

are those with the highest carbohydrates contents: A-10, A-4 and A-9), 
while A-2 and A-6 are carbohydrates-free samples and appear closely 
located to each other and in the most positive PC1 values in the plot; A8 
is intermediate in this regard and occupies a location in the plot 
compatible with it. In the case of the soy samples, S-2, S-7, S-8 and S-9, 
which have the largest contents of carbohydrates (see Table S1), are 
located in the scores plot for the smallest positive values of PC1, while S- 
4 and S-5 are the soy samples with the smallest contents of carbohy-
drates and have the largest positive PC1 scores. The remaining samples 
appear have intermediate carbohydrate contents and, correspondingly, 
are located in the scores plot for intermediate PC1 scores values.

The results of the performed HCA are presented in Fig. 3. It can be 
seen that the algorithm divides the samples into two main groups, one 
composed by soy samples and other by oak and rice samples, while the 
almond samples, as expected, appear distributed by the two groups. The 
soy group exhibit two subgroups accounting for the intragroup disper-
sion already noticed in the PCA scores plot. On the other hand, the oat/ 
rice group exhibits three subgroups: the first comprehends the rice 
samples, which are the most similar ones, as also evidenced in the PCA 
scores plot shown in Fig. 2; and the other two subgroups comprehend 
the oat samples, reflecting the difference between two of the samples (O- 
5 and O-6) and the remaining ones that can also be noticed in the PCA 
scores plot shown in Fig. 2. Samples O-5 and O-6 are very similar to each 
other in compositional terms (see Table S1) but their relative position in 
the PCA scores plot and in the HCA dendrogram cannot be attributed to a 
single compositional factor. Almond samples are present in the two 
subgroups associated with the oat samples, also following the pattern 
observed in the PCA scores plot.

Fig. 3. HCA dendrogram for sample classification of the studied plant-based beverages, based on squared Euclidean distances (1720.6–1371.1 cm–1 region).
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4. Conclusion

The ATR-FTIR spectral data obtained for the investigated plant-based 
beverages clearly distinguished all but the almond drinks based on their 
contents. ATR-FTIR spectroscopy is appropriate for this study, high-
lighting its speed, reproducibility and ability to provide compositional 
information without extensive sample preparation. The obtained results 
are in accordance with the label information on the packaging of the 
beverages. Both PCA and HCA analyses performed using the IR data 
successfully discriminated oat, rice and soy beverages, and allowed to 
identify major constituents in the designated “almond drinks” which 
have high percentages of other (rice, soy) than almond ingredients. In 
relation to this last point, we have to highlight that the models were 
shown to be able to recognize this compositional variability which ap-
pears as a characteristic of the “almond” beverage category available in 
the market. The followed method has the enormous advantage over the 
most commonly used analytical techniques for milk and milk substitutes 
of requiring minimum sample preparation, avoiding the requirement to 
separate the sample into its components for analysis. This approach 
demonstrates potential for qualitative analysis and classification of milk 
and milk substitute beverages, reducing both cost and time compared to 
traditional methods.

The present investigation also opens the gate for future extension of 
the used methodology to address other, more demanding problems. For 
example, the behavior of the developed models in presence of falsified 
beverages can be investigated in order to use them (or some more 
elaborated version of them) to identify possible fraud. Two main ap-
proaches can be foreseen for future studies: use the model (or an 
improved version of it) to perform qualitative fraud detection, or use the 
fundamentals of the method we developed for sugars evaluation (Brito 
et al., 2025) and attempt a semi-quantitative analysis. The first goal 
appears very much achievable, considering that, with all probability, 
most of the false materials added to the beverages will change the 
compositional profile of the falsified sample in a manner that it will not 
group together with the non-falsified ones. The second objective would 
be considerably more relevant in practical terms, but it is also much 
more demanding to achieve and difficult to apply in different settings. 
Another possible development of the strategy presented in this article is 
to address specific quality parameters of the beverages. However, for 
this to be possible, at least semi-quantitative evaluation of the compo-
sitional characteristics of the beverages has to be achieved.
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Berardy, A.J., Rubín-García, M., Sabaté, J., 2022. A scoping review of the environmental 
impacts and nutrient composition of plant-based milks. Adv. Nutr. 13, 2559–2572. 
https://doi.org/10.1093/advances/nmac098.

Biancolillo, A., Marini, F., 2018. Chemometric methods for spectroscopy-based 
pharmaceutical analysis. Front. Chem. 6, 576. https://doi.org/10.3389/ 
fchem.2018.00576.

Brandão, P.M.C.A., Carmo, P.A., Bell, V.J.M., Anjos, C.V., 2010. Characterization of milk 
by infrared spectroscopy. Revista do Instituto de Laticínios Cândido Tostes 373, 
30–33. Retrieved from Accessed March 26, 2025. http://www.researchgate.net/ 
publication/222716940_CHARACTERIZATION_OF_MILK _BY_INFRARED_ 
SPECTROSCOPY.

Brito, A.L.B., Cardoso, I.F., Viegas, L.P., Fausto, R., 2025. Semi-quantitative chemometric 
models for characterization of mixtures of sugars using infrared spectral data. 
Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 326, 125225. https://doi.org/ 
10.1016/j.saa.2024.125225.

Burciu Tuhut, A.C. (2023). Análisis comparativo entre la leche, productos lácteos y 
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Gómez-Mascaraque, L.G., Kilcawley, K., Hennessy, D., Tobin, J.T., O’Callaghan, T.F., 
2020. Raman spectroscopy: a rapid method to assess the effects of pasture feeding on 
the nutritional quality of butter. J. Dairy Sci. 103, 8721–8731. https://doi.org/ 
10.3168/jds.2020-18716.

Ildiz, G.O., Bayari, S., Yorguner, N., Fausto, R., 2021. Chapter 10 - blood serum–infrared 
spectra-based chemometric models for auxiliary diagnosis of autism spectrum 
disorder. Neural Eng. Tech. Autism Spectr. Disord. 1, 185–213. https://doi.org/ 
10.1016/B978-0-12-822822-7.00010-7.

Instituto Nacional de Estatística (Statistics Portugal). (2024). Human consumption of 
milk and dairy products per capita (kg/ inhab.) by type of milk and dairy products; 
Annual. [database]. Retrieved from http://www.ine.pt/xportal/xmain?xpid=INE 
&xpgid=ine_indicadores&indOcorrCod=0000214&selTab=table0&xlang=en. 
Accessed January 28, 2025.

Júnior, P.H.R., Oliveira, K.S., Almeida, C.E.R. de, Oliveira, L.F.C., Stephani, R., Pinto, M. 
S., Carvalho, A.F., Perrone, I.T., 2016. FT-Raman and chemometric tools for rapid 
determination of quality parameters in milk powder: classification of samples for the 
presence of lactose and fraud detection by addition of maltodextrin. Food Chem. 
196, 584–588. https://doi.org/10.1016/j.foodchem.2015.09.055.

Khongphakdee, P., Peanparkdee, M., Sae-tan, S., 2025. Dual effects of thermal processing 
and polyphenol incorporation on bioaccessibility and functionality of soy and whey 
proteins. Food Chem. Adv. 6, 100905. https://doi.org/10.1016/j. 
focha.2025.100905.

Li, M., Chen, J., Xu, J., Fu, S., Gong, H., 2015. Determination of lactose in milk by Raman 
spectroscopy. Anal. Lett. 48, 1333–1340. https://doi.org/10.1080/ 
00032719.2014.979358.

A.L.B. Brito et al.                                                                                                                                                                                                                               Journal of Food Composition and Analysis 145 (2025) 107786 

5 

https://www.uc.pt/lca
https://doi.org/10.1016/j.jfca.2025.107786
https://doi.org/10.1007/s00394-024-03396-w
https://doi.org/10.1007/s00394-024-03396-w
https://doi.org/10.1016/j.vibspec.2020.103033
https://doi.org/10.1016/j.vibspec.2020.103033
https://doi.org/10.1016/j.saa.2020.118628
https://doi.org/10.1093/advances/nmac098
https://doi.org/10.3389/fchem.2018.00576
https://doi.org/10.3389/fchem.2018.00576
http://refhub.elsevier.com/S0889-1575(25)00601-5/sbref6
http://refhub.elsevier.com/S0889-1575(25)00601-5/sbref6
http://refhub.elsevier.com/S0889-1575(25)00601-5/sbref6
http://refhub.elsevier.com/S0889-1575(25)00601-5/sbref6
http://refhub.elsevier.com/S0889-1575(25)00601-5/sbref6
https://doi.org/10.1016/j.saa.2024.125225
https://doi.org/10.1016/j.saa.2024.125225
https://uvadoc.uva.es/bitstream/handle/10324/59968/TFG-H2765.pdf?sequence=1&amp;isAllowed=y
https://uvadoc.uva.es/bitstream/handle/10324/59968/TFG-H2765.pdf?sequence=1&amp;isAllowed=y
https://doi.org/10.1016/j.ijleo.2021.167504
https://doi.org/10.1016/j.ijleo.2021.167504
https://doi.org/10.1016/j.vibspec.2010.07.001
https://doi.org/10.3168/jds.S0022-0302(04)73405-0
https://doi.org/10.3168/jds.S0022-0302(04)73405-0
https://doi.org/10.3168/jds.2020-18716
https://doi.org/10.3168/jds.2020-18716
https://doi.org/10.1016/B978-0-12-822822-7.00010-7
https://doi.org/10.1016/B978-0-12-822822-7.00010-7
http://www.ine.pt/xportal/xmain?xpid=INE&amp;xpgid=ine_indicadores&amp;indOcorrCod=0000214&amp;selTab=table0&amp;xlang=en
http://www.ine.pt/xportal/xmain?xpid=INE&amp;xpgid=ine_indicadores&amp;indOcorrCod=0000214&amp;selTab=table0&amp;xlang=en
https://doi.org/10.1016/j.foodchem.2015.09.055
https://doi.org/10.1016/j.focha.2025.100905
https://doi.org/10.1016/j.focha.2025.100905
https://doi.org/10.1080/00032719.2014.979358
https://doi.org/10.1080/00032719.2014.979358


Mazurek, S., Szostak, R., Czaja, T., Zachwieja, A., 2015. Analysis of milk by FT-Raman 
spectroscopy. Talanta 138, 285–289. https://doi.org/10.1016/j. 
talanta.2015.03.024.

Mendes, T.O., Junqueira, G.M.A., Porto, B.L.S., Brito, C.D., Sato, F., Oliveira, M.A.L., 
Anjos, V., Bell, M.J.V., 2016. Vibrational spectroscopy for milk fat quantification: 
line shape analysis of the Raman and infrared spectra: vibrational spectroscopy for 
milk fat quantification. J. Raman Spectrosc. 47, 692–698. https://doi.org/10.1002/ 
jrs.4878.

Mendes, T.O., Rodrigues, B.V.M., Porto, B.L.S., Rocha, R.A., Oliveira, M.A.L., Castro, F. 
K., Anjos, V.C., Bell, M.J.V., 2020. Raman spectroscopy as a fast tool for whey 
quantification in raw milk. Vib. Spectrosc. 111, 103150. https://doi.org/10.1016/j. 
vibspec.2020.103150.

Nieuwoudt, M.K., Holroyd, S.E., McGoverin, C.M., Simpson, M.C., Williams, D.E., 2016. 
Screening for adulterants in liquid milk using a portable Raman miniature 
spectrometer with immersion probe. Appl. Spectrosc. 71, 308–312. https://doi.org/ 
10.1177/0003702816653130.

Reiner, J., Protte, K., Hinrichs, J., 2020. Investigation of the applicability of Raman 
spectroscopy as online process control during consumer milk production. 
ChemEngineering 4, 45. https://doi.org/10.3390/chemengineering4030045.

Santos, G., Nogueira, R.I., Rosenthal, A., 2018. Powdered yoghurt produced by spray 
drying and freeze drying: a review. Braz. J. Food Technol. 21, e2016127. https:// 
doi.org/10.1590/1981-6723.12716.

Shahbal, N., Jing, X., Bhandari, B., Dayananda, B., Prakash, S., 2023. Effect of enzymatic 
hydrolysis on solubility and surface properties of pea, rice, hemp, and oat proteins: 
implication on high protein concentrations. Food Biosci. 53, 102515. https://doi. 
org/10.1016/j.fbio.2023.102515.

Shenbagalakshmi, G., Shenbagarajan, A., Thavasi, S., Gomathy Nayagam, M., 
Venkatesh, R., 2023. Determination of water quality indicator using deep 

hierarchical cluster analysis. Urban Clim. 49, 101468. https://doi.org/10.1016/j. 
uclim.2023.101468.

Silva, M.G., Paula, I.L., Stephani, R., Edwards, H.G.M., Oliveira, L.F.C., 2021. Raman 
spectroscopy in the quality analysis of dairy products: a literature review. J. Raman 
Spectrosc. 52, 2444–2478. https://doi.org/10.1002/jrs.6214.
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