Co-doped FeNbO4: Simple synthesis, DFT calculations and electrocatalytic performance for the hydrogen evolution reaction in alkaline medium

Raí F. Jucá^{1,9*}, Diego S. Evaristo², Francisco G. S. Oliveira², Luís P. M. Santos³, Gilberto D. Saraiva², Antonio J. R. Castro⁴, Nilson S. Ferreira^{1,9}, Luis F. Lobato⁵, João M. Soares⁶, Anna Luiza B. Brito⁷, Rui Fausto^{7,8}, Marcelo A. Macêdo¹ and Benilde F.O. Costa⁹

¹Departamento de Física, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil.

²Faculdade de Educação Ciências e Letras do Sertão Central, Universidade Estadual do Ceará, Quixadá – CE, 62902-098, Brazil.

³Programa de Pós-Graduação em Engenharia e Ciência de Materiais, Centro de Tecnologia, Universidade Federal do Ceará, Campus do Pici, Bloco 729, 60440-900, Fortaleza, CE, Brazil.

⁴Universidade Federal do Ceará, Campus Quixadá, 63902-580, Quixadá, CE, Brazil.

⁵ Institute of Criminalistics, Scientific Police of Pará, Marabá, PA 68507-000, Brazil.

⁶Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoró, RN, Brazil.

⁷ University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535 Coimbra, Portugal.

⁸ Istanbul Kultur University, Spectroscopy@IKU, Faculty of Sciences and Letters, Department of Physics, Bakirkoy, Istanbul 34158, Türkiye.

⁹University of Coimbra, CFisUC, Department of Physics, P-3004-516 Coimbra, Portugal

*Fig. S1: reciprocal lattice of FeNbO*₄ *illustrating the high symmetry path used in this calculation.*

Table S1. Lattice parameters (a, b, c), angles ($\alpha = \gamma, \beta$), unit Cell Volume (V), weighted profile factor (R_{wp}), and chi (χ^2), estimated from the XRD pattern Rietveld refinement for $Fe_{(1-x)}Co_xNbO_4$ ($0.0 \le x \le 0.20$).

Со	а	b	С	$\alpha = \gamma$	β	V	R_{wp}	χ^2
Content	(Å)	(Å)	(Å)	(°)	(°)	(A^3)	(%)	
0.00	4.6463	5.6137	4.9940	90.00	90.046	130.26	16.54	1.51
0.05	4.6468	5.6175	4.9978	90.00	90.024	130.46	16.34	1.32
0.10	4.6486	5.6209	5.0019	90.00	90.046	130.70	17.79	1.44
0.15	4.6491	5.6223	5.0029	90.00	89.962	130.54	16.77	1.23
0.20	4.6601	5.6364	5.0161	90.00	89.931	131.75	16.33	1.69

				Co^{+2} conten	et -	
	Туре	0.00	0.05	0.10	0.15	0.20
	(Fe/Co)-O1	1.949	1.981	2.001	2.120	2.282
	(Fe/Co)-O2	1.969	1.975	1.968	1.961	1.965
Bond	(Fe/Co)-O2	2.111	2.259	2.262	2.275	2.291
length (Å)	Nb-O1	1.976	1.981	1.978	1.971	1.968
	Nb-O1	2.136	2.034	1.998	2.001	2.005
	Nb-O2	1.893	1.891	1.875	1.883	1.862
Bond	(Fe/Co)-O-(Fe/Co)	99.97	100.60	99.99	98.61	97.72
Angle (°)	Nb-O-(Fe/Co)	127.38	126.14	125.10	124.24	122.76

Table S2. Bond length and Angles for $Fe_{(1-x)}Co_xNbO_4$ ($0.0 \le x \le 0.20$) structure.

Fig. S2: (a-c) Plot of lattice parameters (a, b, c) and (d) volume as a function of increasing Co content.

Fig. S3: Deconvolution profile of the Raman modes for $Fe_{(1-x)}Co_xNbO_4$ *samples (0.05* $\leq x \leq 0.20$). *(a)* x = 0.05, *(b)* x = 0.10, *(c)* x = 0.15, *(d)* x = 0.20.

$\omega_{obs} (cm^{-1})$						
0	0.05	0.10	0.15	0.20		
133.72	133.73	134.04	134.07	134.17		
146.60	146.01	145.86	144.77	144.15		
172.01	171.04	170.42	169.95	169.33		
209.16	208.20	206.64	205.09	204.46		
222.06	221.25	222.19	218.77	217.68		
271.96	270.22	271.16	268.98	268.36		
299.83	298.52	298.13	297.43	296.96		
318.92	317.64	316.86	315.62	315.55		
359.41	358.68	359.61	357.59	359.93		
389.71	389.62	388.69	387.91	387.75		
412.62	411.69	411.54	410.76	409.52		
464.28	463.63	463.77	460.82	456.31		
494.61	494.71	494.24	496.46	489.07		
583.64	583.67	583.86	578.35	581.61		
599.26	601.36	597.48	596.50	601.67		
622.30	622.50	622.50	616.95	623.43		
814.51	818.69	823.97	824.63	829.61		

Table S3. Raman shift modes of $Fe_{(1-x)}Co_xNbO_4$ ($0.0 \le x \le 0.20$) samples.

Fig. S4: Size distribution histograms obtained from SEM images for $Fe_{(1-x)}Co_xNbO_4$ samples $(0.05 \le x \le 0.20)$. (a) x = 0, (b) x = 0.05, (c) x = 0.10, (d) x = 0.15 and (e) x = 0.20.

Fig. S5: EDS spectra for $Fe_{(1-x)}Co_xNbO_4$ polycrystalline. (a) x = 0.0, (b) x = 0.05, (c) x = 0.10, (d) x = 0.15 and (e) x = 0.20.