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Synthesis of the Schiff base SS and of 5-S-3-OMe

Synthesis of N,N’-bis(5-sulfonatosalicylidene)-1,2-ethylenediamine disodium salt (Schiff base
§S). Sodium salicylaldehyde-5-sulfonate (5-S) was prepared according to a procedure
described in the literature (Scheme I) [39]. A mixture of salicylaldehyde (3.66 g, 30.0 mmol)
and aniline (3.56 mL, 39.0 mmol) in ethanol (25 mL) was heated at reflux for 2 h. After
cooling to room temperature, the solvent was evaporated to give N-phenyl-salicylaldimine as
a pale-yellow solid. Yield: 4.32 g (21.9 mmol, 73%). Then, N-phenyl-salicylaldimine (3.24 g,
16.5 mmol) was added to concentrated sulfuric acid (9 mL, 98 wt %), and the mixture was
stirred at 100 °C for 2 h. After cooling, the solution was slowly added to ice water with
vigorous stirring and a yellowish solid precipitated. The mixture was reheated until all the
solid was dissolved and then allowed to cool. N-Phenyl-salicylaldimine-5-sulfonic acid was
obtained as a yellow precipitate, which was filtered, washed with ice water and ethanol, and
dried under vacuum. Yield: 2.80 g (10.0 mmol, 61%). N-phenyl-salicylaldimine-5-sulfonic
acid (2.30 g) was dissolved in boiling water (45 mL) and anhydrous sodium carbonate (0.75
g) was slowly added in small portions. After CO. evolution had ceased, aniline was removed
by passing a continuous stream of air through the boiling solution for several hours, with
water added as necessary to maintain the volume. After cooling, glacial acetic acid was slowly
added up to pH 5 followed by addition of ethanol (50 mL). The mixture was cooled to 0 °C to
give sodium salicylaldehyde 5-sulfonate (5-S) as a yellow precipitate, which was filtered,
washed with ethanol, and dried under vacuum. Yield: 1.61 g (7.2 mmol, 86%). 'H NMR
(D20, 400 MHz, Figure Sl): 6 (ppm) 10.05 (s, 1H), 8.20 (d, J = 2.4 Hz, 1H), 8.00 (dd, J =2.4
and 8.8 Hz, 1H), 7.17 (d, J = 8.8 Hz, 1H). This data in accordance with that previously
described for this compound [75]. To a suspension of compound 5-S (112 mg, 0.5 mmol) in
methanol (4 mL), a solution of 1,2-ethylenediamine (23 mg, 0.3 mmol) in ethanol (0.5 mL)
was added dropwise, and the reaction mixture was stirred at 80 °C for 5 h. After cooling to
room temperature, the precipitate was filtered and washed with methanol and diethyl ether to
give SS as a yellow powder. Yield: 142 mg (0.3 mmol, 60%). *H NMR (DMSO-ds, 400
MHz, Figure S11 (a)): & (ppm) 13.61 (bs, 2H), 8.67 (s, 2H), 7.69 (s, 2H), 7.54 (d, J = 7.1 Hz,
2H), 6.80 (d, J = 7.1 Hz, 2H), 3.92 (s, 4H). 3C NMR (DMSO-dg, 100 MHz, Figure S11 (b)):
d (ppm) 167.4, 161.5, 139.6, 130.4, 129.4, 117.5, 116.3, 58.9. This data is consistent with that
previously described for this compound [47,76].



Synthesis of sodium 3-methoxy-salicylaldehyde-5-sulfonate (5-S-3-OMe). Sodium 3-methoxy-
salicylaldehyde-5-sulfonate (5-S-3-OMe) was prepared by a procedure similar to that used for
5-S (Scheme 1) [39]. A mixture of 3-methoxysalicaldehyde (4.56 g, 30.0 mmol) and aniline
(3.6 mL, 39.0 mmol) in ethanol (25 mL) was heated at reflux for 2 h. After cooling to room
temperature, the solvent was evaporated to give N-phenyl-3-methoxysalicylaldimine as an
orange solid. Yield: 6.32 g (27.8 mmol, 93%). Then, N-phenyl-3-methoxysalicylaldimine
(5.99 g, 26.4 mmol) was added to concentrated sulfuric acid (35 mL, 98 wt %), and the
mixture was stirred at 100 °C for 2 h. After cooling, the solution was slowly added to ice
water with vigorous stirring and a yellowish solid precipitated. The mixture was reheated until
all the solid was dissolved and then allowed to cool. N-Phenyl-3-methoxysalicylaldimine-5-
sulfonic acid was obtained as a yellow precipitate, which was filtered, washed with ice water
and ethanol, and dried under vacuum. Yield: 5.98 g (19.7 mmol, 75%). N-Phenyl-3-
methoxysalicylaldimine-5-sulfonic acid (3.50 g) was dissolved in boiling water (62 mL) and
anhydrous sodium carbonate (1.04 g) was slowly added in small portions. After CO. evolution
had ceased, aniline was removed by passing a continuous stream of air through the boiling
solution for several hours, with water added as necessary to maintain the volume. After
cooling, glacial acetic acid was slowly added up to pH 5. The mixture was cooled to 0°C to
give sodium 3-methoxy-salicylaldehyde-5-sulfonate (5-S-3-OMe) as an earthy yellow
precipitate, which was filtered, washed with ethanol, and dried under vacuum. Yield: 2.69 g
(10.6 mmol, 93%). *H NMR (D20, 400 MHz, Figure S12 (a)): & (ppm) 10.06 (s, 1H), 7.71 (d,
J=2.2Hz, 1H), 7.45 (d, J = 2.1 Hz, 1H), 3.93 (5, 3H). 3C NMR (D20, 100 MHz, Figure S12
(b)) 196.4, 152.4, 148.2, 134.4, 121.3, 120.4, 114.4, 56.4. This data in accordance with that

previously described for this compound [75].
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Figure S1. a) *H NMR spectrum of compound MSS (400 MHz, DMSO- ds); b) **C NMR spectrum of

compound MSS (100 MHz, DMSO- ds).
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Figure S2. High-resolution full scan mass spectrum obtained in the ESI positive mode for MSS, (A = - 0.81
ppm). Calc. for CigH19N2Na2010S,; [M+H]* 533.0271.
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Figure S5. Simulated NMR spectra of MSS (I-b-NH), Enol_m-MSS (1), Keto_m-MSS (I1) and Diol (l11)
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Figure S6. Optimized geometries of complexes a and c.
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Table S1. Reaction times, yields, melting points and physical properties of the ligand, MSS, and its Al(lI)

complex.
Molecular Formula | Abbreviated Conventional Microwave M.P. Color [M+H] * found
name Time Yield Time Yield °C (calc.) %
Ci18H18N2Na2010S2 MSS 120 min 66% | 45min | 87% | >300 Yellow 533.0267
(533.0271)
AlIC1sH20N2Na2012S2 Al / 50min | 52% - - > 300 pale- (594.45)
MSS yellow

Table S2. Relative electronic energies (AEe) (kJ mol™), zero-point-corrected electronic energies (AEtota), Gibbs energies at
298.15 K (AG29sk), and equilibrium populations (%) estimated from the relative Gibbs energies (P2gs) calculated for the lowest
energy conformers and tautomers of MSS (DFT(B3LYP)/6-311++G(d,p)) considering the bulk effects of the DMSO solvent.

Structure I-b-NH | Il-c-NH | 1ll-c-OH | IV-a-NH = V-b-OH @ VI-d-NH = VII-d-OH Vlll-a-OH
Symmetry C Ci Ci Ci C Gi Ci Ci
AEe (kJ/mol) 0.03 0.00 9.73 18.73 9.00 18.71 27.58 27.50
A(Ewal) (kJ/mol)  0.00 0.29 5.69 15.77 5.58 15.95 20.73 20.8
AGa29sk 0.00 1.12 7.43 12.60 12.40 13.58 17.58 19.03
P29s (%0) 58.62 37.37 2.93 0.36 0.40 0.25 0.05 0.03

Table S3. Relative electronic energies (AEe) (kJ mol™), zero-point-corrected electronic energies (AEtoal), Gibbs energies at
298.15 K (AGagsk), and equilibrium populations (%) estimated from the relative Gibbs energies (P29s) calculated for the lowest
energy conformers and tautomers of MSS (DFT(B3LYP)/6-311++G(d,p)) in gas phase (isolated molecule in vacuum).

Structure I-b-NH I1-c-NH | 11l-c-OH 1V-a-NH V-b-OH | VI-d-NH | VII-d-OH | VIII-a-OH
Symmetry C, Ci Ci Ci C, Ci Ci Ci
AEel (kJ/mol) 36.04 33.88 0.00 36.36 1.55 36.48 5.18 4.92
A(Etotar) (kd/mol) 35.29 33.47 0.00 33.90 1.44 33.98 3.09 2.67
AG29sk 38.97 35.7 2.06 35.11 3.09 35.28 3.35 0.00
P29s (%0) 0.00 0.00 21.98 0.00 14.52 0.00 13.05 50.45

14



Table S4. Mulliken charges on the imine carbon atoms and equilibrium populations (%) (P2gs) of
the lowest energy conformers and tautomers of SS and MSS (DFT(B3LYP)/6-311++G(d,p)),
considering the bulk solvent effects of water.

Conformer MSS (in water) SS (in water)
Mulliken charge | Pagsk (%) | Mulliken charge | Pagsk (%0)
Imine carbon Imine carbon
I-b-NH 0.205 67.24 0.229 7.79
I1-c-NH -0.238 30.64 a -
I11-c-OH -0.239 1.42 b -
1V-a-NH 0.058 0.30 0.269 1.34
V-b-OH -0.318 0.20 -0.164 7.66
VI-d-NH 0.050 0.15 -0.034 50.58
VII-d-OH -0.044 0.05 b -
Vill-a-OH -0.027 0.00 -0.067 32.63

@ Same structure as for VI-d-NH
b Same structure as for VII1-a-OH

Table S5. Calculated (B3LYP/GIAO) *H NMR chemical shifts for MSS, m-MSS (phenol-imine (I) and keto-

enamine (1) forms), diol and complexes a, b and c, in comparison with the respective experimental chemical
shifts® (D20 solutions, 298 K).

MSSP H-8/8 H-6/6 H-4/4° H-9/9° H-7/7°
pH* 4.0 8.50 7.41 7.23 4.03 3.92
pH* 7.0 8.37 7.30 7.12 4.02 3.80
B3LYP/GIAQ)M 7.90 7.25 7.00 3.89 3.71
m-MSsP H-8m H-6m H-4m H-9m/H-9’m H-7m
pH* 4.0 8.47 7.38 7.20 3.43 3.81
pH* 7.0 8.45 7.37 7.19 3.40 (broad) 3.76
(1) B3LYP/GIAO 7.94 7.24 6.97 3.31 3.89
(1) B3LYP/GIAO 8.78 7.53 7.3 3.43 4.01
Diol H-8 H-6 H-4 H-7
(111) B3LYP/GIAO 6.4 7.61 7.55 3.97
Complex a° (A) (© (E) (H)
pH* 4.0 9.34 7.66 7.47 3.89
B3LYP/GIAO 9.35 7.67 7.53 3.85
Complex b © H-8/8’ H-6/6’ H-4/4 H-9/9° H-7/7
pH* 7.0 8.52 7.47 7.25 3.96 3.78
B3LYP/GIAO 8.61 7.55 7.37 4.07 4.02
Complex c © H-8m H-6m H-4m H-9m/H-9°’m H-7m
pH* 7.0 8.09 7.39 7.27 3.61/3.39 3.82
B3LYP/GIAO 8.49 7.51 7.39 3.33/3.00 4.00

a3 values, in ppm, relative to Me4Si, using tert-butyl alcohol (61 = 1.2) as an internal reference.
®5 mmol dm= MSS solution. ¢ 5: 5 mmol dm= Al(l11) /MSS solution; ¢ calculated values.
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