Supplementary Material

Matrix Isolation of Vapors from 1,2,4-Triazolium Salts: Exploring the Generation of *N*-Heterocyclic Carbenes

Tatiana Caneca,^a Epole Ntungwe,^a Leonardo J. Duarte, ^{a,b} A. J. Lopes Jesus,^{c*} Cláudio M. Nunes,^{a*} and Rui Fausto ^{a,d}

 ^a University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal.
^b Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-900, São Paulo, Brazil
^c University of Coimbra, CQC-IMS, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.

^d Spectroscopy@IKU, Istanbul Kultur University, Faculty Sciences and Letters, Department of Physics, 34158 Bakirkoy, Istanbul, Turkey

* Corresponding authors:

A. J. Lopes Jesus, E-mail ajorge@ff.uc.pt;

Cláudio M. Nunes, E-mail: cmnunes@qui.uc.pt

Table of Contents:

1. Figures	S2
2. Tables	S11
3. Computational Data	S12

1. Figures

Figure S1. (b) Experimental IR spectrum recorded after trapping vapors of 1,2,4-triazole-3carboxylic acid **7** in an Ar matrix at 15 K. Sublimation of the compound was achieved through heating the compound at ~338 K inside a miniature glass oven as described in the Materials and Methods section of this paper. The bands at 2345-2339 and 664-662 cm⁻¹, marked with an asterisk (*), are due to CO₂ trapped in the matrix. The experimental spectrum is compared with the B3LYP/6-311+G(2d,p) calculated IR spectra of (a) the most stable isomer of **7**, and of (c) 1,2,4-triazole **9** which nicely reproduces the experimental data. The calculated wavenumbers were scaled by 0.980. At the top of the figure, the thermal decomposition reaction of 1,2,4triazole-3-carboxylic acid **7** is depicted, illustrating its conversion to 1,2,4-triazole **9** and CO₂.

Figure S2a. ¹H NMR (top) and ¹³C NMR (bottom) spectra of 1,4-dimethyl-1,2,4-triazolium iodide $[DMTrH^+][I^-]$ (acetone-d₆).

Figure S2b. ¹H NMR (top) and ¹³C NMR (bottom) spectra of 1,4-dimethyl-1,2,4-triazolium trifluoroacetate [DMTrH⁺][TFA⁻] (acetone-d₆).

[DMTrH⁺····I[−]]

Figure S3. B3LYP/6-311+G(2d,p)[LANL2DZ]-GD3BJ optimized geometry of the [**DMTrH**⁺···**I**⁻] ion pair (atom numbering is given for the 1,2,4-triazolim cation) and B3LYP/6-311+G(2d,p)-GD3BJ optimized geometries of all minima exhibited by the [**DMTrH**⁺···**TFA**⁻] ion pair (values in square brackets are the relative Gibbs energies at 298.15 K in kJ mol⁻¹). The geometric parameters refer to H···O distances (Å) and C–H···O angles (°) characterizing the hydrogen bonds formed. In the specific case of structure IV of the [**DMTrH**⁺···**TFA**⁻] ion pair, the C5····H distance is also shown. Counterpoise correction was applied in all geometry optimizations.

Figure S4. TG (black solid trace), DTG (dotted trace), and DSC (blue trace) curves for solid 1,4-dimethyl-4*H*-1,2,4-triazolium iodide [**DMTrH**⁺][**TFA**⁻] and liquid salt 1,4-dimethyl-4*H*-1,2,4-triazolium trifluoroacetate [**DMTrH**⁺][**TFA**⁻].

Figure S5. Polarized light thermomicroscopy images collected upon heating 1,4-dimethyl-4*H*-1,2,4-triazolium iodide [**DMTrH**⁺][**I**⁻] from 22 to 135 °C at a rate of 10 °C min⁻¹.

Figure S6. Spectral evidence for the non-formation of carbene 2,4-dimethyl-1,2,4-triazol-5ylidene **DMTr** upon sublimation of 1,4-dimethyl-4*H*-1,2,4-triazolium iodide [**DMTrH**⁺][**I**⁻]. (a) Experimental IR spectrum of the vapors produced from the sublimation of the solid salt at ~ 363 K and trapped in solid Ar at 15 K. Red asterisks indicate predicted absorption positions for **DMTr** that lack correspondence in the experimental spectrum; (b) B3LYP/6-311+G(2d,p) calculated spectrum of **DMTr**. The wavenumbers were scaled by 0.98 and the the bands were simulated with Lorentzian functions with a full width at half-maximum (FWHM) of 2 cm⁻¹, with the band heights adjusted to match the calculated IR intensities Blue asterisks mark experimental band positions with no corresponding bands in the calculated spectrum.

Figure S7. Radial distribution function (blue) and its integrated form (red), showing the number of anions around the cation moiety of the ionic liquid. The first "coordination sphere" contains 6 **TFA**⁻ anions around 1 **DMTrH**⁺ cation.

Figure S8. B3LYP/6-311+G(2d,p) spectra calculated for 1,4-dimethyl-1,2,4-triazol-5-ylidene **DMTr** (red trace) and for the most stable conformer of trifluoroacetic acid (**HTFA**, blue trace), highlighting the differences in band intensities between the two spectra. The wavenumbers were scaled by 0.980 and the the bands were simulated with Lorentzian functions with a full width at half-maximum (FWHM) of 2 cm⁻¹, with the band heights adjusted to match the calculated IR intensities.

Figure S9. B3LYP/6-311+G(2d,p) relaxed potential energy scan as a function of the C5…H distance for the dissociation of the [**DMTrH**⁺...**TFA**⁻] ion pair. The minimum energy (C5…H = 1.13 Å) corresponds to the ion pair, while the flat region at C5…H = 1.57 Å represents the formation of the [**DMTrH**⁺]:[**TFA**⁻] complex which does not correspond to a true energy minimum.

2. Tables

Table S1. Experimental ATR IR spectrum of 1,4-dimethyl-4*H*-1,2,4-triazolium iodide [**DMTrH**⁺] [**I**⁻] at room temperature, B3LYP/6-311+G(2d,p)[LANL2DZ]-GD3BJ (including counterpoise correction) computed vibrational frequencies (\tilde{v} , cm⁻¹) and absolute intensities (A^{th} , km mol⁻¹), and approximate vibrational assignment for the **DMTrH**⁺···**I**⁻ ion pair.

Exp. (KBr pellet) ^{<i>a</i>}		Calc.		A
ĩ	Int.	$\tilde{\nu}^{\ b}$	A^{th}	- Approx. assignment
1583 /1542	S	1561.4 1508.0	65.2 67.4	$\frac{\nu C_5 N_4 - \nu C_3 N_2}{\nu C_5 N_1 - \nu C_3 N_2}$
1452	m, br	1483.8 1472.1 1454.0 1448.7	11.4 11.7 8.5 12.5	δ(CH ₃) as δ(CH ₃) as δCH ₃ as' δCH ₃ as'
1401 1389		1428.0 1410.3	2.6 3.6	δCH ₃ s δCH ₃ s
1365	m	1377.9 1363.3	78.0 13.6	$\frac{\nu C_5 N_4 + \nu C_5 N_1 + \nu C_3 N_2}{\nu C_3 N_4 - \nu C_6 N_1}$
1293 1242	W W	1275.4 1228.4	3.5 6.8	$ \begin{array}{c} \nu N_1 N_2 + \nu C_5 N_4 \\ \delta C_3 H \end{array} $
1178/ 1166 1093	s W	1163.1 1126.2	44.5 5.0	δC ₅ H ρCH ₃
1077/ 1070 988	m m	1078.8 1055.6	32.1 21.1	$\begin{array}{l} \rho CH_{3}';\nu C_{5}N_{1}+\nu C_{5}N_{4}\\ \nu C_{3}N_{4};\delta N_{1}N_{2}C_{3};\delta C_{3}N_{4}C_{5} \end{array}$
900 854	m w	960.5 832.2	20.0 4.4	νN1N2; δN1N2C3 γC3; γC3H
740	m	738.9 718.4	9.4 79.0	$\frac{\nu C_6 N_1 - \nu C_4 N_7}{\gamma C_5}$
657/652	m	636.2 613.5	12.4 50.1	$\begin{array}{c} \gamma N_1 \!\!-\! \gamma N_2 \!+\! \gamma C_3 - \gamma N_4 \\ \nu C_6 N_1 \!+\! \nu C_4 N_7 \end{array}$
613/ 605	s	571.6	160.1	$\gamma N_1\!\!+\gamma N_4\!-\!\gamma C_5$

^{*a*}Absorptions in the high frequency region, corresponding to CH and CH₃ stretching vibrations, were not analyzed. Experimental wavenumbers are given in cm⁻¹. For the multiplet bands, the most intense component is highlighted in bold. Abbreviations: br = broad. Experimental intensities (Int.) are expressed qualitatively: s = strong; m = medium; w = weak. ^{*b*} Calculated harmonic wavenumbers were multiplied by 0.980. ^{*c*}Abbreviations: v, stretching; δ , in-plane bending; ρ , rocking; γ , out-of-plane bending. Signs "+" and "–" designate combination of vibrations occurring in the same phase and in the opposite phase, respectively.

3. Computational data

3.1. Cartesian coordinates for the optimized structures of the ion pairs and the species produced by evaporation of the studied salts

[DMTrH⁺····I⁻] B3LYP/6-311+G(2d,p)[LANL2DZ]-GD3BJ (including counterpoise correction)

Ν	-1.735535	-1.043949	0.239226
Ν	-2.434072	-0.644759	-0.870223
С	-2.362234	0.651347	-0.849287
Ν	-1.648321	1.106164	0.228731
С	-1.161397	0.001606	0.841529
С	-1.353014	-2.432823	0.405326
С	-1.161829	2.459312	0.455387
Ι	1.647869	-0.025447	-0.101463
Η	-2.820526	1.302777	-1.573747
Η	-0.656660	-0.018626	1.787553
Η	-1.294187	-2.665578	1.466912
Η	-2.109335	-3.048667	-0.072637
Η	-0.373458	-2.577957	-0.057186
Η	-1.727160	3.142748	-0.173788
Η	-1.299943	2.732288	1.500154
Η	-0.099428	2.482848	0.198422

[DMTr] (Cs)

B3LYP/6-311+G(2d,p)

Ν	1.038698	0.140667	0.000000
Ν	0.708357	-1.202380	0.000000
С	-0.588229	-1.175401	0.000000
Ν	-1.053971	0.114895	0.000000
С	0.000000	0.993696	0.000000
С	2.441782	0.505104	0.000000
С	-2.452826	0.511596	0.000000
Η	-1.214176	-2.053655	0.000000
Η	2.500531	1.590096	0.000000
Η	2.932718	0.105710	0.888166
Η	2.932718	0.105710	-0.888166
Η	-2.960931	0.136045	0.889892
Η	-2.485880	1.597809	0.000000
Η	-2.960931	0.136045	-0.889892

[1	-methyl-1 <i>H</i>	-1,2,4-triazo	le 10] (<i>C</i>s)
	B3LYP	2/6-311+G(2	d,p)
N	0.000000	0.584470	0.000000

T.M.	0.000000	0.30 + 70	0.000000	
Ν	-1.119685	-0.179452	0.000000	
С	-0.629611	-1.407568	0.000000	
Ν	0.726833	-1.482794	0.000000	
С	1.085286	-0.212503	0.000000	
С	-0.083902	2.030823	0.000000	
Η	-0.614318	2.373183	0.888446	
Η	-0.614318	2.373183	-0.888446	
Η	0.925479	2.439222	0.000000	
Η	-1.272618	-2.273524	0.000000	
Η	2.095103	0.167867	0.000000	

[4-methyl-1*H*-1,2,4-triazole **11**] (*C*₁) B3LYP/6-311+G(2d,p)

Ν	1.495868	-0.690780	0.008716
Ν	1.495869	0.690779	0.008716
С	0.247369	1.074709	-0.005994
Ν	-0.594622	0.000000	-0.020547
С	0.247368	-1.074709	-0.005994
С	-2.048095	0.000000	0.013455
Η	-2.423687	0.883510	-0.500872
Η	-2.417717	-0.000014	1.040400
Η	-2.423689	-0.883495	-0.500897
Η	-0.097281	2.096870	-0.012817
Η	-0.097282	-2.096870	-0.012817

[**DMTrH**⁺···**TFA**⁻] – Stucture I (*C*₁) B3LYP/6-311+G(2d,p)-GD3BJ (including counterpoise correction)

2.382780	-1.075048	0.084346
1.769039	0.110431	0.224769
2.691835	1.028927	-0.014986
3.686422	-0.807460	-0.240784
2.500499	2.472566	-0.005027
1.749357	-2.389435	0.253454
0.683539	0.322053	0.443778
4.428010	-1.567585	-0.420239
1.449540	2.665791	0.198970
3.126438	2.913965	0.768273
2.776104	2.874172	-0.978018
1.998248	-2.787702	1.236118
0.671565	-2.245159	0.150550
2.118093	-3.055692	-0.523806
3.905278	0.475581	-0.310583
-1.513441	-0.157738	0.094600
-3.042407	0.102732	-0.068676
-1.089736	-1.273384	-0.237198
-0.877981	0.827819	0.547061
-3.266217	1.105136	-0.950323
-3.715588	-0.970090	-0.510934
-3.603291	0.470718	1.103926
	2.382780 1.769039 2.691835 3.686422 2.500499 1.749357 0.683539 4.428010 1.449540 3.126438 2.776104 1.998248 0.671565 2.118093 3.905278 -1.513441 -3.042407 -1.089736 -0.877981 -3.266217 -3.715588 -3.603291	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

[DMTrH⁺…TFA⁻] – Stucture II (*C*_s) B3LYP/6-311+G(2d,p)-GD3BJ (including counterpoise correction)

Ν	1.186289	2.658554	0.000000
С	0.181186	1.767163	0.000000
Ν	-0.936164	2.472691	0.000000
С	0.612977	3.903208	0.000000
С	-2.301145	1.952300	0.000000
С	2.607692	2.306191	0.000000
Η	0.332912	0.651862	0.000000
Η	1.169283	4.825519	0.000000
Η	-2.229460	0.863081	0.000000
Η	-2.811379	2.313789	0.890727
Η	-2.811379	2.313789	-0.890727
Η	3.085294	2.707274	0.892273
Η	2.680377	1.220759	0.000000
Η	3.085294	2.707274	-0.892273
Ν	-0.686782	3.818049	0.000000
С	-0.226922	-1.524925	0.000000
С	-0.072822	-3.076537	0.000000
0	-1.376260	-1.066757	0.000000
0	0.869708	-0.907511	0.000000
F	0.612977	-3.495052	1.088101
F	-1.247924	-3.723081	0.000000
F	0.612977	-3.495052	-1.088101

[**DMTrH**⁺···**TFA**⁻] – Stucture III (*C*₁) B3LYP/6-311+G(2d,p)-GD3BJ (including counterpoise correction)

Ν	2.247726	0.752334	0.061288
С	1.851857	-0.262829	0.839394
Ν	1.705757	-1.318625	0.055220
С	2.254245	0.265978	-1.220424
С	1.111021	-2.599345	0.402998
С	2.327212	2.155128	0.466106
Η	1.723172	-0.234217	1.903258
Η	2.487385	0.867018	-2.082133
Η	1.217522	-2.751668	1.474158
Η	0.054102	-2.575888	0.141312
Η	1.628471	-3.382589	-0.145184
Η	2.680284	2.207690	1.493131
Η	3.030835	2.667716	-0.186112
Η	1.321778	2.569819	0.374091
Ν	1.938356	-0.994200	-1.254608
С	-0.966020	0.745353	0.323975
0	-0.536422	1.636983	-0.418246
0	-0.469787	0.252941	1.365595
С	-2.294113	0.047146	-0.111544
F	-3.183010	-0.045107	0.895601
F	-2.021048	-1.232693	-0.512880
F	-2.911717	0.647531	-1.136904

[**DMTrH**⁺···**TFA**⁻] – Stucture **IV** (*C*₁) B3LYP/6-311+G(2d,p)-GD3BJ (including counterpoise correction)

Ν	-1.985481	1.073784	0.157797
С	-1.270647	-0.022304	0.526033
Ν	-2.053388	-1.028860	0.132555
С	-3.149925	0.663830	-0.437902
С	-1.768852	-2.446279	0.263063
С	-1.541757	2.451819	0.326218
Η	-3.903052	1.330483	-0.824432
Η	-0.819204	-2.551784	0.779953
Η	-2.561742	-2.927300	0.833916
Η	-1.704912	-2.899043	-0.725399
Η	-2.361060	3.059763	0.707818
Η	-0.723189	2.461209	1.040262
Η	-1.192373	2.856550	-0.623311
Ν	-3.225226	-0.632318	-0.467886
0	1.139090	-0.062067	1.640984
С	2.210789	-0.036879	0.898963
Η	0.173011	-0.056185	1.140993
0	3.348613	-0.030360	1.287586
С	1.940148	-0.011353	-0.636344
F	1.216863	1.084865	-0.982449
F	3.062582	0.006814	-1.344260
F	1.222892	-1.093406	-1.023935

[DMTrH⁺···TFA⁻] – Stucture V (*C*_s) B3LYP/6-311+G(2d,p)-GD3BJ (including counterpoise correction)

Ν	-0.893870	2.171932	0.000000
С	-0.791096	3.504544	0.000000
Ν	0.498378	3.795443	0.000000
С	0.389485	1.672902	0.000000
С	1.138846	5.101009	0.000000
С	-2.140262	1.387848	0.000000
Η	0.624771	0.578306	0.000000
Η	0.370991	5.871322	0.000000
Η	1.759723	5.190760	0.889212
Η	1.759723	5.190760	-0.889212
Η	-2.712286	1.631861	0.893758
Η	-2.712286	1.631861	-0.893758
Η	-1.866962	0.322631	0.000000
Ν	1.253224	2.660181	0.000000
0	-1.287456	-1.482731	0.000000
С	-0.089487	-1.810646	0.000000
Η	-1.605995	4.207856	0.000000
0	0.937282	-1.096859	0.000000
С	0.214741	-3.342508	0.000000
F	0.937282	-3.695233	-1.088039
F	0.937282	-3.695233	1.088039
F	-0.891649	-4.105138	0.000000

3.2. Force filed used in the Molecular Dynamics Simulations

Copy and paste the following data in a *.ff file. ATOMS #Unique type, similar type, m/u, q/e, pot, pars *#Trifluoroacetate* 2.960 OFA OFA 15.999 -0.7374 lj 0.8786 CO2CO212.011 0.7390 lj 3.400 0.3598 CFA 3.400 CFA 12.011 0.5214 lj 0.4577 FA18.998 FA-0.2619 lj 3.118 0.2552 # 1,3,4 *triazolium* HCR HCR 0.2169 2.420 0.1255 1.008 lj CR12.011 -0.0854 3.550 0.2929 CRlj NA NA 14.007 0.0847 lj 3.250 0.7113 CWCW12.011 0.2196 3.550 0.2929 lj HCW HCW 1.008 0.1808 lj 2.420 0.1255 NNC NNC 14.007 -0.4067 lj 3.250 0.7113 C112.011 -0.3669 3.500 0.2761 Cllj Hl Hl 1.008 0.1878 2.500 0.1255 lj NNA NNA 14.007 3.250 0.7113 0.3972 lj

BONDS

Atom i, Atom j, potential type, re/A, kr/kJmol-1 # Trifluorogeotate

# Irifl	uoroac	etate		
CFA	<i>CO2</i>	harm	1.585	1700.40
<i>CO2</i>	OFA	harm	1.241	6298.38
CFA	FA	harm	1.359	3089.75
# 1,3,4	triazol	lium		
HCR	CR	harm	1.076	3521.92
NA	CR	harm	1.339	3971.86
NA	Cl	harm	1.472	3084.99
Cl	Hl	harm	1.085	3294.54
NA	CW	harm	1.371	3084.99
CW	HCW	harm	1.076	3517.70
CW	NNC	harm	1.303	4418.36
NNC	NNA	harm	1.358	3842.65
NNA	CR	harm	1.323	4073.46
NNA	Cl	harm	1.469	2843.61

ANGLES

Atom i, Atom j, Atom k, potential type, theta_e/deg, ka/kjmol-1 #trifluoroacetate

<i>CO2</i>	CFA	FA	harm	114.126	440.26
FA	CFA	FA	harm	105.661	351.15
OFA	<i>CO2</i>	OFA	harm	132.906	494.48
CFA	<i>CO2</i>	OFA	harm	113.535	417.27

#1,3,4 triazolium

NA	CR	HCR	harm	126.16	219.05
CR	NA	Cl	harm	127.19	271.80
NA	Cl	H1	harm	109.30	344.53
NA	CR	NNA	harm	107.39	288.57
NA	CW	NNC	harm	111.24	331.51
NA	CW	HCW	harm	123.97	234.53
NNA	NNC	CW	harm	104.74	385.76
NNA	CR	HCR	harm	126.44	220.22
CR	NA	CW	harm	105.72	282.62
CW	NA	<i>C1</i>	harm	127.08	266.71
CR	NNA	<i>C1</i>	harm	128.81	294.47
HCW	CW	NNC	harm	124.78	235.94
Hl	Cl	H1	harm	110.28	154.42
NNA	<i>C1</i>	H1	harm	108.70	348.75

DIHEDRALS

Atom i, Atom j, Atom k, Atom l, potential type, v1, v2, v3, v4 #trifluoroacetate

FA	CFA	<i>CO2</i>	OFA	opls	0.0000	0.0000	0.00000	0.0000
# 1,3,4	triazol	lium						
Hl	<i>C1</i>	NA	CR	opls	0.0000	0.00000	-0.5816	0.0000
Cl	NA	CR	HCR	opls	9.6232	25.4764	0.0000	0.0000
HCN	CW	NA	CR	opls	9.6232	25.4764	0.0000	0.0000
NA	CW	NNC	NNA	opls	9.6232	25.4764	0.0000	0.0000
CW	NA	CR	NNA	opls	9.6232	25.4764	0.0000	0.0000
CW	NA	CR	HCR	opls	0.0000	20.5016	0.0000	0.0000
Cl	NA	CR	NNA	opls	0.0000	20.5016	0.0000	0.0000
Cl	NNA	CR	NA	opls	0.0000	20.5016	0.0000	0.0000
Cl	NNA	CR	HCR	opls	0.0000	20.5016	0.0000	0.0000
HCW	CW	NA	CR	opls	0.0000	0.0000	-0.5816	0.0000
HCW	CW	NA	<i>C1</i>	opls	0.0000	0.0000	-0.5816	0.0000
NNC	CW	NA	CR	opls	9.6232	25.4764	0.0000	0.0000
NNC	CW	NA	<i>C1</i>	opls	9.6232	25.4764	0.0000	0.0000
Hl	<i>C1</i>	NA	CW	opls	0.0000	0.0000	-0.5816	0.0000
H1	Cl	NNA	CR	opls	0.0000	0.0000	-0.5816	0.0000
IMPR	OPER							
#triafl	uoroace	etate						
CFA	OFA	<i>CO2</i>	OFA	opls	0.0000	0.0000	0.0000	0.0000
#1,3,4	triazoli	ium						
NA	NNA	CR	HCR	opls	0.0000	87.8640	0.0000	0.0000
CR	CW	NA	<i>C1</i>	opls	0.0000	87.8640	0.0000	0.0000
NA	HCW	CW	NNC	opls	0.0000	87.8640	0.0000	0.0000